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DERIVATION OF THE BOLTZMANN EQUATION AS 

A TEST CASE OF KINETIC-THEORETICAL SCHEMES « 

by 

Toyokl Koga** 

Polytechnic Institute of Brooklyn,    Graduate Center 

Farmingdale, New York 

SUMMARY 

The derivation of the Boltzmann equation from the 

Liouville equation can be a means of testing the feasibility 

of a kinetic-theroetical scheme,  since the Boltzmann 

equation is known as empirically plausible.    From this 

viewpoint • we investigate kinetic-theoretical schemes deriving 

the Boltzmann equation.   We may derive the Boltzmann equation 

consistently by considering the Liouville equation to govern the 

distribution cf a system in the phase space which is not symmetric 

in the microscopic sense.   On the other hand, we cannot derive the 

equation consistently on the assumption of symmetry of the 

distribution; the Boltzmann collision integral is not compatible with 

the symmetry assumption. 

This research was supported under Contract Nonr 839(38) for 
PROJECT DEFENDER, and the Advanced Research Projects 
Agency under Order No. 549 through the Office of Naval Research. 

Visiting Professor; currently on professional staff of TRW Systems, 
Inc., Redondo Beach, California. 
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I.   INTRODUCTION 

By examining usual procedures of the derivation of 

the Boitxmann equation from the Liouville equation, we 

find inconsistencies in the procedures.   The main purposes 

of this paper bre:   1)   to point out a common defect in the 

functions of modern kinetic-theoretical schemes by 

analysing these inconsistencies and   i) to attempt eliminating 

the inconsistencies; the attempt is the one to rationalize kinetic 

theory itself. 

The Boltzmann equation is a product of intuitive but 

ingerious thoughts of Maxwell and Boltzmann.       In spite of 

the intuitiveness involved in the original derivation, the 

feasibility of the equation has been tested and confirmed 

in many ways    ; the equation is to be appreciated as a basic, 

if empirical, law by itself.   Therefore, as a means of proving 

the feasibility of the Boltzmann equation itself, it is of no 

significance to show a radical derivation of the equation from 

the Liouville equation.   On the contrary, it is more likely to 

be a proof of the feasibility of a kiaetic-theoretical scheme that 

the scheme is able to derive consistently the Boltzmann equation 

from the Liouville equation.    In other words, the derivation of 

It is well-known that the equation was proposed by Boltzmann 
in 1874.    We may see, however, that Maxwell* s equations of trans- 
fer proposed in 1866 would have stimulated Boltzmann to conceive 
the equation.    See The Scientific Papers of James Clark Maxwell 
(Dover,N.Y.). Vol. IT, p. 26. 

S. Chapman and T. G.  Cowling,  The Mathematical Theory of Non- 
Uniform Gases (Cambridge University Press, 1^61),  second edition. 
For example, by assuming a proper law of interaction force between 
molecules constituting a gas. we may calculate the viscosity co- 
efficient and heat conduction of the gas according to the Boltzmann 
equation. 



the Boltzmann equation under certain conditions can be a 

trial of the feasibility of kinetic-theoretical scheme.      (Of 

course,  there may be a benefit that such a derivation shows 

us more explicity conditions which limit the validity of the 

Boltzmann equation.) 

There have been attempts made by several authors to 

derive the   Boltzmann equation from the Liouville equation. 

In spite of their radical intention,  however, the attempts do 

not seem suo.w8sful:   For conceiving properly the Boltzmann 

equation, it is necessary to make the concept of molar disorder 

and that of molecular order as compatible.     The compatibility 

of these two conflicting concepts of states of particles in the 

Boltzmann equation was made possible ingeniously by Boltzmann 

and Maxwell by means of the Stosszahlansatz.     On the other 

hand, by a purely kinetic-theoretical approach,  the compatibility 

tends to be made possible only on the destruction of consistency 

of the analyses.     The common failure of known kinetic-theoretical 

schemes deriving the Boltzmann equation is found at this point. 

Then,  changing our viewpoint,   the very failure suggests to us that 

there exists a basic and common defect in the structures of these 

kinetic-theoretical schemes.     That is the assumption of the 

See section 4. 
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microscopic symmetry of the distribution of a system in the phase 

•pace .     Based on this assumption,  modern kinetic-theoretical 

schemes are not well-equipped with machinery by which it is 

possible to treat molar disorder and molecular order aj 

compatible. 

In section Z, basic concepts and definitions necessary 

for the dervation are introduced.     It is stressed that the 

distribution of a system in the phase space is not symmetric 

in the microscopic sense.    In section 3,  it is shown that coarse- 

graining operations with respect to time and also with respect 

to similar particles are necessary for deriving the Boltzmann 

equation; the compatibility between molar disorder and molecular 

order is assured by the difference between the macroscopic and 

microscopic time scales.     In comparison with the derivation 

given in section 3, we identify the common difficulty and its 

causes in known derivations by taking the Kirkwood-Ross 

derivation and the Bogollubov derivation for examples in 

section 4.     We also evaluate the derivation proposed by Grad 

which is rather anomalous. 

The distribution Is not symmetric in the microscopic senne. 
T. Koga, "Reply to Comments of P. Schräm,  Phys. Fluids, 
6,  *»3S (1963); "A Kinetic Theoretical Investigation of a Fully 
Ionized Gas",  Part I,  PlBAL Report No. 863,  January 1965. 



II.    PREPARATORY DEFINITIONS AND TREATMENTS 

The Liouville equation governing the evolution of 

the distribution of a system consisting of N similar particles 

(material points) is 

a "    Pi *     _ ?     *     >   ^(N) _ 
*   at        ,   ,     m Br. ■'' i   ^p.    ' '       ' 

i= 1 i ri 

with 

/N. .•,^. -v 

A = y ^ij -^j = 4* J,ii = 0 u*2) 
J 

(N) Here D     'is the distribution function of the system in the 

phase space, t   is time;   m    is the mass of a particle;   p.   is 

an independent variable representing a point in the momentum 

space for particle   i;   r.    is an independent variable representing 

a point in the position-vector space for particle i; Jl   is 

the total force exerted on   particle i;   vj/»..   is the force exerted 

on particle i   by particle j.     It is assumed that there is no 

external force exerted on the system.     Since we are investigating 

a single system,  D       is to be given by 

Dm   - %      6{X    - X*(t)) (2.3) 
i= I 1 1 



where X.   is a six-dimensional    .ctor standing for   p. and r. 

Xi   = ^i'  ri 

and X. (t) constitutes a set of solutions of the equations of 

mot!on of the N particles.     It is noted that Ox   ' is not 

symmetric with respect to the interchange of coordinates 
* 

between any two particles : 

D^t*! X. X. XN) 

3t   D^^Xj. X. X. XJJ) (2.4) 

Distribution function« of subsystems are defined as follows: 

F.^Nx.Jt) = V J   D^ TT   dX. (2.5) 
iti      3 

where 

dX.   = do.   dp.   dp.   dr.   dr.   dr. 

and V is the volume of a domain of the configuration space in 

which the system is known to exist throughout the entire period 

of time of our investigation; the domain may be chosen arbitrarily 

as long as it is sufficiently large that the system or its part will 

not run off the domain.     Once it is chosen, however,  the domain 

See footnote on page 4. 
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should not be changed during our investigation.    Further we define 

F   (2)(X;X;t) = V2    D^TT dX,,  ifi>j (2.6) 
1J l    J k ^ i, j     ^ 

= 0 ifi = j (2.6)' 

and so forth.   It is nokod that the order of subscripts attached to 
(2) 

F*     is the same as the order of t' e same set of subscriptß at- 

tached to the X' s in F* '.    This accordance of the  /rders means 

that there has been no interchange of coordinates among particles. 

According to the definition, it holds that 

F(^ (X..   X.; t) = F. ^(X..  X,: t) (2. 7) 

FJ2) (X..   X.: t) i F   *2)(X..  X.: t\ /?  7\i 

and 

V' (Xi'  Xj; ^ * Fij,Ä'(Xi'  Xj; ^ <?" 7) 

in view of (2. 4). 

By ir tegrating Eq.  (2,1),  term by term, with respect to 

the coordinates of all the particles except for particle i, we obtain* 

1 

(-3r+-S-'^:>   F.^'(X.;t) 

(continued on next page) 

Because of the finiteness of V and of the energy of the system, 
I it holds that 

Therefore 
AD^ = °A;D W drv= 0 k 

/ 
Fji • -si- F ^ «j = ° 

This term is retained in equation (2. 8) for the convenience of the 
further treatment of the equation. 

warn 



(X..X.;t)dX. = 0 
i     J        J 

(2.8) 

If the integration is mar'e with respect to all the particles except 

for particle i and particle, j, we obtain 

+"7 i ■' ^ • ^r+ ^-^ FS(xi'xj' v* dxk=o 

(2.9) 

We may increase the number of particles of exception sn that 

the equations of evolu'J -n of F* ' and others are derived successively. 

By making averages with respect to particles, we define 

N  .. ^        Xa+AXa 

F(1)(X ;t) iX = ^- v.      I       Fi<1>lx.:t)dX. 
a *    N   i=l   JXa    ' l l 

xb + Axb 
,rii2,(Xi' ^^ A ^ =-R- T    [       ^^ (X5' ^^) **; xj    '   i'    j' 

(-• 10) 

(2.11) 



F^X.X.-OAX^J: J  aFif(xi.xj.t)dx. 
Xa 

F(2)(Xa, Xb;t) AXaiXb 

(2. 12) 

Xa+AXa    Xb+AXb 

N=     ij    JXa 
JXh    lJ      l    J 1     J 

a b (i. 13) 

Functions of X. and/or X. are discontinuor.f functions as shown 

by (Z. 3),      but functions of X   and/or X,   may be continuous as 

the numbei density of particles increases.     In the above,  it is 

worthwhile   to recall that Xj, X.,   etc. are independent variables. 

Defined by 

f(c. r;t)drdp/m3 =N F^^p. r;t)drdp (2. 14) 

c = p/m ,    dr=dr dr dr ,    etc. r       * x    y    z 

f is the number density of the particles specified with velocity 

c and position vector r at time t. 

It is often assumed that f defined by (2.14) is the very 

function which evolves according to the Boltzmann equation.   We 

note#ho\vever,  th&t there is a difference between f and the function 



to be governed hy the Boltzmann equation as is e: . tained in 

the following.     The Boltzmann equation is postulf ted by 

(Tr + c--5r)f,(c'r:t) 

= \ [f'(c'1.r;t)£'xc,.r;t) -£'(c. r;t)] 

|c,..cl dyhdhdc, (2. 15) 

According to the definition of the Boltzmann equation,  c,  c1, c
! and 

c1, must be velocities of particles only in free flight; therefore 

f'  should be defined so that f' gives the number density of such 

particles only.     Angle cr &nd length h are variables specifying 

the geometrical relation  of a collision between two particles which 

begins with initial (asymptotic) velocities c and  c     of the 

two particles, as are illustrated in Fig. Z. 1; c' and c'j are the 

final (asymptotic) velocities of the two particles after the collision. 

In Eq.  (2. 15),  c.  c1, and h are independent variables; in accordance 

with the equations of motion of two particles, a collision may 

begin either with c and c^ or with c" and c^   and ends,respectively 

either with c' and c\ ,   By the Boltzmann equation, the evolutio» 

of f is due to the effects of many collisions accounted for in such a 

manner that the effect of each collision is the integral of the 

10 
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relevant differential effect over the entire phase of the collision. 

On the other hand,  the evolution of F/ ' according to Eq.   (Z. 8) 

it) due to the effects of collisions accounted for at given X. 

which may be a state of particle i during a collision as well 

as during a free flight.     See the schematic comparison given in 

Fig.  2. 2.      Therefore f defined by (2.14), which counts in net only 

the number density of pai icles in free flight but also that of 

particles during their collisions,is not the very distribution 

function to be governed by the Boltzmann equation.     However, 

if the portion of a unit time during which a particle is in interaction 

with others is much smaller than the other portion during which 

the particle is la free flight, we may eliminate small and sudden 

fluctuations in f due to particles in collisions,  by making an average 

of f over a time period from t to t + T . 

1    •T 

<f>0   = — I      f(c, r(8); t+ s)ds 
o 

(2. 16) 

where 

dr(s) .nv —ST1- = c.       r(0) = r 

If T   and r(T)-r are negligibly small in the macroscopic sense 

II 



and yet large in the microscopic sense,   <f>o defined above is 

equivalent to £ in the macroscopic sense.     In the microscopic 

sense,   <i>0»  unlike f itself,  is a smooth function of t presenting 

only the density of pr.rticles in free flight.     Therefore it is 

more plausible to take <f>0.  instead of f,  for the distribution 

function V to be governed by the Boltzmann equation (2. 15) ( 

f  = <f 0 (2- 17) 

12 



III.    DERIVATION OF THE BOLTZMANN EQUATION 

First, we assume that the significant interactions among 

particles are always binary.     In other words,  if /7".. is 

significant, then   1 ..   and /or J .,  are negligible.       According 

to this assumption,  the integral term in Eq.   (I. 9) vanishes: 

(4_t4.^+4..^+31.^+£1.^)F,r(X1.X1;.) 
^t m    ' B r. m 

1-)F^( 
^r".      -ij^     ^ji '^Pj        U   l   i     J 

= 0 

(3.1) 

Secondly,we assume that the scale J1 of gas dynamical processes 

in the system is much longer than   the time scale T^ of inter- 

particle interaction: 

T1    >>    T, 

During the time period from t to t +8, we consider fictitious 

trajectories of particle ; which satisfy 

Jl 

dr (s) P. 
_l_ = _mL_ .    r.(s)   = r. +ar  .(s) 

dp, 
= 0 

(3.i) 

(Trajectories 0) 

13 



with initial conditions 

^(0)   =r. (3.3) 

Here r.   ard p  are independent variables, but r. (s) is a 

function of time s.     These fictions trajectories are named 

trajectories   0.     Taking T   SO that 

Ti  »   T  »Tt (3.4) 

we make the average of each term of Eq. (2. 8) along the 

trajectories 0 over s from 0   to T .     On consideration of 

^ F/% rt(.);,)  ..£- F^dv ,,(.)« + .) 

we may see that 

41   C (^ ^ ^) ^».^ .„ a. 
t-^t+S 

14 

f^    IIIM»IJ5»BB 
t 



= J_   rT{-^-  +^-.^1^)   F.(1)(p..r.(s);t+8)d8 
Ö 

(^_+A.     S    ,    <   F.(1)(X;t)> 
i 

(3.5) 

where 

<F.(1)(X.;t)>= 4-L    F.(1)(pi.r.(8);t+8)dt 

(3.6) 

By coar8e-graining Eq.  (2. 8) in the above sense, we obtain 

(■?r+'S---£r> <ri
{lhxi.i)>o + <J.>O = o 

(3.7) 

where 

j     =1    r       r/T.  .^-  +5:. .^-)F..(2)(Xi.X.;)dX. 

t-* t+8 

(3.8) 

15 



For deriving the Boltzmann collision integral from (3. 8), 

we consider the following three points which are commonly 

essential in statistical investigation: 

1.   In (3. 8), the summation with respect to j is made first 

and then the result is averaged with respect to s.     In order to 

make the time average separately with respect to each of particles 

j, it is necessary either to choose T sufficiently short that particle 

i interacts with particles j once, at most, during the time between 

t and t + T, or to assume that the interactions are very weak. 

(Suppose that there are two strong collisions of particle i during 

the period between t and t + T.     The effect of one collision when 

it occurs first is different from the effect of the same collision 

when it is assume d to occur second.     Note that X. is an independent 

variable and is the same in the two cases, but F.    'in the first case 

is different from F.    'in the second.)    The necessity of the above 

condition will be discussed again with respect to (3. Zl). 

Z.     Since we are observing < F.    '(X.;t)> , i = 1, 2, 3,..«. 
I l Q / 

it is impossible and also unnecessary for us to know the precise 

time when   the precise state with which a particular particle j 

begins to interact significantly with particle i.     Thus we may 

16 



set the same assumption as the Stosszahlansatz by Boltzmann 

with respect to the abte with which particle j begins to interact 

significantly with particle i during the time between t and t + T; 

Particle j is one of the particles which are located near particle 

(N) i at time t,. and among which Dv   ' may be assumed to be symmetric. 

If we take Ar.  for the domain of the configuration space in which 
D 

such particles j exist,   definition 2.11 leads to; 

dXb ds 

o^1« m+s 
(3.8) 

Note that the domain of the integration with respect to dr.   is 

limited by A r,  in accordance with the definition of F.'  ' which 7       b IO 
(2) is continuous unlike   F.. '     Further,  on coarse-graining with 

respect to i in accordance with (2. 13), we have 

<J>o ■ —ffi&A ^(VV"] 

On consideration of the above,  Eq. (3. 7) yields 

dXb d8 {3.8)" 
+8 

(lr  +-^^)   " F(Va:t)>   +< J>    =0 (3.7)' 
a o 

17 



3.   The result of the coarse-graining must be independent of T. 

Otherwise, the result has no definite physical meaning.     The 

situation depends on the distribution of particles in A r,  and T, 

II the distribution Is uniform, the result Is perfect.     As the 

density of a gas becomes more rarefied and the distribution of 

particles In Lr,  and T becomes more non-unlfomi,  the result tends 

to depend on T.     Then the j osslblllty of kinetic theory diminishes. 

Instead of <J.>   , we may make <J.,,> by coarse-graining J 
1   0 lI i 

over time from t to t + T along trajectories I which satisfy 

dr.is) p.(s) dp.(s) 

-3s— = -m— ' ds       =^^ (8) 

(3.9) 

dr.(8)     %r% 
J PJ 

IK" m 
<ip.(s)       ^ 

~J— =A(8) 
ds 3l 

with initial conditions 

rl(0)   = 'l'   pl(0) = Pi 

(Trajectories I) 

^(0) =   r..   p^O) = pj 

Thus we obtain 

' i \        * f T I    /d,!i(',,   * ""J^5 ä    , 

Pijixi(8),Xj(8);t*8)dX da 

(3. 10) 

(2.11) 

18 



Equations (3. 9) constitute the characteristic equations of 

Eq. (3. 1) if d/ät is replaced with ä/ö     and t with t + s. 

Therefore, by integrating Eq.  (3. 1} along trajectories I given 

by (3. 9), we obtain 

J-Ä" FiP (Xi(8)'  Xj(9); t + 8) ds 

= 1 F..   (x.is).   X.(s);t+8)lo    = 0 (3. U) 

where 

d      _ dr^s) , ^(s) d 

dp.(8)      a dp^)     d 

By making the average of < J.> . with respect to particles in the 

same way es is shown by (2. 13), we obtain 
T dP, 

(8) 

NT"       ,dpa(8)       9        ■    -D 0        x 
J>i = -rr- J J A   

("T8—^PT«) "^     -spTTs); o   Arb a 

F(2)(Xa(8), ^(8).    t +   8)  d^ ds 

(3. 14) 

19 



where Ar.   is of the same implication as stated with respect tu 
D 

(3. 8)1.     On definition of   C-i-J   b   by 

9 Pa<8)        8 P» r d   i     =   d   + ra'0/     a        +   ^b^      a  
ds   " .    ^ de n-,      '  ör   (s) m        ' "^r, (s) 

+^b<8' -TTTS) 
+ ^a(s) -^rrs) 

(3.15) 

relation (3. 14) yields 

<J>
T "TT^ JO jArw

( Lirr J .   T*" I b ab 

a'  /      d 
nn     '  dr  (s) a* 

•pb<8)    a 
F- •c^^^s), v(2,'xa<8)' V8):t + 8) 

dX   ds 1Xb 

(3. 16) 
.U) 

Unlike (3. 12) [ j; ]      F      in the above integrand does not vanish. 
'   ^ ab 

The reason is that 

a     ,,{2) ^ ä       ^(2), 
^ab-^F Fl,<XA;t)    ^ab'SF"   ^'^V) 

etc. 

20 



A X    and ü X.   considered in (2. 13) cover domains of the 

configuration space which are larger than the domain of the 

force field induced by a single particle; hence only a few of all 

the particles among two groups of particles,  one group in states 

between X   and X   + L K   and the other in states between X, 
a a a o 

and X.   + AX.,  are really participating in binary collisions 

of the mode specified by (3. 13); many of them are in collisions 

of different modes and/or in free flight.     Hence we may write 

for (3. 16) 

<T>     = ^Sn   j* [ FU)(X  (T ). X. (T); t + T ) 
I        ^     Arb 

- F(2)<Xa' W* dXb 

-Tv- JoW (|^-^'^(s)+-*i--^s); 
I  ~b 

F(i)(Xa{s), Xb(8); t + s) dXbds 

(3. 17) 

It will be shov    that the first integral in the above yields the 

Boltzmann collision integral while the second integral is insignificant 

-dl 

^=-'--^J 7:.~--!-:- ^r^Fi-^-r^r^^J^. :^^" 



if the number density particle is as low as uscial. 

Particles in state X,  may interact with particles in 

state   X   during the period of time between t a-d t + T only if 

r.  at time t is chosen in the domain of ehe configuration space 
b 

between r'.    and rl" respectively defined by 

(r'b-ra)   .    (pb.pa) = 0 

"b   " 'a» '   <Pb ■ Pa> 

|Pb-Pa|
a/m (3.18) 

as is illustrated in Fig. 3. 1. Hence, by presenting r with 

a cvlindrical coordiiiate system with the origin at r and the 

altitude in the direction of p,   - p , we have 

I Pb- Pal      <• 
Ärb = J  drb ' " T m J   dcDhdh 

(3. 19) 

Here ro stands for the direction angle and h the radius in the 

plane   of zero altitude.     We also assume that, before and after 

a collision between two particles,  the correlation between the two 

particles is weak so that 

tl 



F(2,<xa' xb;t) 
m FXi,(X  ;t) Fvl'(XK;t) rn: 

F^,(Xa(T).   Xb(T);t + T  )   =     F(I,(Xa(T); t+ T)       F{1,(Xb(T); t f T ) 

(3.20) 

On consideration of (3. 19).   the second member in the right-hand 

side of (3. 17) is of the order of 

-f a dt m       ^r m^ 
—m  )  F^;(Xa,Xb;t) 

dp t ;Pb  v  d to n dh 

N4r 
b     ,   <■' 

^JT"  +    m     'J" 
4_ ^ rm )  F^'CX   !t) 

(3.21) 

where Ar,   is given by (3. 19) and is the volume of the configuration- 

space domain in which we find at t such pa: tides as to interact 

with particles of state X    in the future   between t and t + T.     It a 

is reasonable  ,   therefore,  to assume that 

16 
0[ J dip hdh], = a     = 5 x 10'      cm' 

where o2 is the order of cross section or o is the maximum distance 

between two particles within which their interaction is significant 

to 
The assumption is reasonable only for neutral molecules.    See 
for example,   J.H.  Jeans.  The Dynamical Theory of Gases (Dover. 
N.Y.).  fourth edition,    p.  281. 

ti 
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and that 

-1/3 
(N/V) « 

*               1 
OC1 (Pv - P )/"i] «mean free path length    = --r  

By choosing T as in the above, we have 

2/J 

oM-S-) 

n 

NAr 
« Y^- « 7^ =*= 0.2 (3.22) 

If N/V = 10 , then o43(N/V) '' = 5x10 .  Under this condition, 

it appears barely possible to choose ^ 80 that (5.22) is 

satisfied.  If N/V » lO2**, then <r?(N/V)2/3 = 5, and 

(5.22) does not hold regardless of f  .     It in  noted that 

condition NAr./V <(l is the very condition that '"£" is 

short so that particle i interacts with other particles 

once nt most durin; the time period between t and t ♦ 4 . 

Note the stitements which follow (5.8).  Under condition (3.22;, 

the term Tiven by (3.21) is ncrli^ibly small as compared with 

the first two terms of Eq.(5.7). Thus, with the help of 

(3.19) «nd (3.20), Eq.(3.17) yields 

<J> I  =-4|[' F
ll)(Pa(T).fa<?>;t> ) F(1)(pb(r).rb(r);t+   ) 

- FC1)(p„,rJt) F
(1)(pb,rb^)  J ra  a 

bh - PJ 
m 

\(f  h dh d p. 

See J. H.  Jeans,   The Dynamical Theory of Gases 
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If w(» consiier thnt 7" , r  (r)-r and r, (T'^-r  are of microscopic 
a a b b 

scales  and  hence 

F(1)(pj,,r3(?)5t.r)   =   <F(1)(pat   r^t)^ 

etc. 

in the time scale of   ( .,   we  finally  hive 

<J>i --~\[ ^^VtTv^o <^Ty(Vr>.ra.«)>o 

d </> h dh d p r m 

(3.25) 

Since   V^JJ/Q    an<i    C ^-   /  i    are  ma^e  ^y averaging 

resoectively «»lonff trajectories 0 and  trajectories  I,   these 

two averages are not  mutually  equivalent.     In the   following, 

however,   it  will  be shown that 

^V^X    =       O^^i ^.26) 

after their beini? coarse-grained with respect  to    ^articles 

in the same way as  is suown by   (2.13):     J.     is a  function 

of X.   '»nd  t,  and exists along a line nam^d J.   in the X.t- 

space as is shown schematically in A of Fig.3*2.     By  the 

assumption oi  binary collision,   line J.   coincides with 
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one of th- trajectories  I.    Since we are dealina; with a 

single eyatem,   J.   vanishes unless particle i is in 

interaction with particle  j so tn?tt j). . is significant. 

Almost straight  lines in the same illustration are 

trajectories o.    In B of Fig.5.2,  J^ ^ \0    and  ^^S 

ars shown at time t.       J.   anoears as presented jy 

J -function;     X^^T al80    appears as if  J-function, 

since J.   exists only on one of the traje'iories I. 

On the other hand, vJ. V     made by averaging J. 

along trajectories 0 is shown as if an error function. 

Obviously 

\Ji>o   ^    <Ji>i <3-27) 

It ts obvious, however, that 

r<jt(xllt)>0dx1. j^h-^y^h »• 28) 

This is because both are the same total intensity of 

J      from t to t  ♦  7"    divided by C\     If the number of 

particles w^ich exist in states between X    and X    +    «^ X 

is sufficiently large,   we may assume 

<J(VO>0   -   <J(X..t)>I ".«I 

where,   of course, 
• X  ♦■ A Xa a a 

a     l / v 
a 
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,X   +4X r   a a 

a       i 
<J(x,;t)>i = rar 2;     <Ji<xiit)>I dx.    o. 30) 

Needless to aay, condition (3.28) is compatible with 

(5.26),  According to the above, Eq.O.?)' yields 

(4- * ~^~) <:F(1)(X ;t)>   +/J>T = ü 

(5.31) 

In order to reduce Eq.(3.31) to Eq.(2.15), it in 

necessary to replace ^F A 

(?.lk)  ind (2.16): 

with f in accordance with 

f'(c,r;t> « N mVF(1'(p,r;t)^0     (3.32) 

c = p/m (3.33) 

It mfiy be a trivial matter that we tak^. off subscript a, 

replace subscript b with 1, and write mc' and mc^ 

respectively for p. (?) and p ("£) for completing the 

reducti on. 

Finally, the essential points in the aoove derivation 

«re sutrmarized as follows; 

1.  We may take some other class of trajectories in 

nlace of tiajectories 0, as long as tney are equivalent 
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in time seile     t    . 

2. Also,   trajectories  I may be repliced   vith 

trajectories  II,   etc*   ,   if these das  es are  equivalent 

in time scale   ( _. 

3. X.   ic an independent  variable,   and F^     (X.;t) 

is a discontinuous function to be presented by v -function. 

But    Ffl^(X 5t)    is a continuous function,  if N/V and a 

^ X      are sufficiently large.    The situation is 

similar with respect  to F*"   (X^X .;t),   etc. 

k.     Although 

-Js F[j)<Xi   3),X.(s);t+s)  = 0 

in (5.12), yet 

flf ] ab    F('J)(Xa(3).X&(s),t.s) / 0 

in (5,15). 

5.     The domain of  intepiration     J   dr.     considered 

in (3.19) is finite in the direction of p.-p .    This 

is neres'ary,  after replacing    F  "   (X.,X.;t)  with 
ij     0 

"TTi  
F  (X ,X, ;t),   for taking into account the fact that 

a b 

a particle with its finite velocity is localized in a 

narrow iomain of the configuration space durin,* a short 
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'- 
i 

period of time  f. Note that F.(2) (X, ,X .; t) is 

discontinuously localized by itself, but that 

TIT 4(N) F  (X ,X. ;t) is a continuous function.  If D 

were symmetric in the microscopic sense, the above 

limitation of the integration with respect to db. 

would not be .-justified. Then the value of the 

collision intetral would always be indefinitely large. 

29 
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IV.  DIFFICULTIES IN USUAL DERIVATIONS 

Ther« have been different derivations published 

by several authors* As typical examples, the derivations 

by Kirkwood end Ross, by Bogoliubov, and by Grad are 

Investigated in the following. Because of the assumption 

of symmetry of 0   considered in the microscopic sense, 

these derivations involve common difficulties. 

4.1. Derivation by Kirkwood and Rose* 

1. Being coarse-grained with resp-ct to time, 

Eq.(2.ö) yields 

where 

/P^^XJ^)^    =-i-        Fi
(1)(Xi;t4.s)ds 

(4.1) 

(4.2) 

By assuming that the distribution Is symmetric,  we may replace 

J. Kirkwood and J. Ross,  The Statistical Mechanical Basis of the 
Boltzxnann Equation,  in Proceedings of the International Symposium 
in Statistical Mechanics,  Brussels,  1965,  edited by I.  Prigogine 
(Intsrscience Publishers, Inc. , New York, 1958. 
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F^1)(Xi;t)  with F
(1;(X1;t) 

FiJ>(Xi,Xj5t) with F^^X^t) 

•j 
with N 

.(2) The next procedure is to define K " by 

f 
F(2)(X1,X2;t+8)   = 

(4.3) 

K(2)(X1,X2/X|,X^;s)  F(2)(X^X'2;t)dX^ dX 

^M 
.(2) Since K        is ^iveii explicitly by 

K^^Xj^.X^X^X^s) = J(x1-X£-4x1(s))   ö(x2-x^ -4x2(«)) 

(4.'5) 

it is easily shown that 

F(2)(XlfX2{t>8) = F(2)(X1-nX1(8),X2 -iiX2(s);t) 

(4.6) 

According to Kirkwood and Ross, ^X,(s), standing for4p1(s) 

and A  r-fs), and AX (s), stsndin«; for 4 p2(6) and 4 r2(8), 

are the changes in momenta and space coordinates of particle 1 

and particle 2 determined by solving the equations of motion 

of the two particles in accordance with the as umption of 
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binary colllsioia: 

dAr^s)        v1 ♦AP1(6) 

da m 

dAp    (B) /£ 
(4.7) 

and 

dA^Cs/        Pj^       ^APj^Ca) '> 

da m da 

etc. 

.   —     *Jl2 (4.9) 

in plaoa of (4.7).    Not« that  p,,   p.,   r.  and r    ^r« 

indep«n('*nt of a in (4.9)«  and h-snce ti»« aquationa ar* 

i 

aimilar aquaticna for particle 2 . 

Under thia circumatance, they claim that Fv  given by (4.6) 

ia a aolution of Eq.(5.1) where <>/dX,  ie replaced with^/^s: 

(4.8) 

Here a* p., p.. r1 and r. are to be independent variablea» , 

(2) It ia obTioue, however, that P   ijiven by (4.6) under 

condition (4.7) does not satisfy Eq.(4.8),  Instead, 

it ia obvioua that Fv ' aatiafiea Eq.(4.8), if U X.(s) 
I 

and & X-(a) are solutions of 
2 
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not the equations of motion of the two particles. Only 

«hen A X^fs) and AXAa)    are extremely small,  £qs. (4*9,1 

coincide with Eqs.^.?).  It is noted that the particular 

solution of Eq.(4.8) integrated along trajectories determined 

by Eqe.(4.7) is considered in (3*12). 

2.  Although AX^(B)  and A X-^s) satisfying Eqs. (4.9) 

are not the proper trajectories of the two particles in 

interaction, such as expected to be by the authors, yet 

F   given by (4.6) is a correct solution of Eq.(4.8) 

under condition (4.9). Therefore, if the succeeding treatavnt 

is proper, it may leai to a correct result.  By substituting 

Pv ^ given by (4.6) in the collision integral of (4.1), 

however, we will meet a great difficulty in the following 

*.raatirjnt: Since X1 and X. are Independent variables, the 

domain of th« integration with respect to dr. is to be the 

entire configuration spaoe; ^J*,^    and/or j^ pi are fuaction8 

of r. and r. , and are completely Independent of ^r1(s) and 

^^(s) by (4.9). Therefore, Ar-Cj«) -AT2C£)  IS not a 

factor which affects the magnitude of 3t1p»    Even when 

Afi^) -4r2^ is •*tr««a«ly l*rge, yet Jt._ may not 

vanish if r1 - r. is small, and vice versa. Hence, 
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trere i.~ no reason for limiting tne dorriain OA inte rJwion 

with respect to drp in the direction of p^ - p.  by 

^[p^-Pj^j/m that la a function of 4" . 

3»  The dif'-iculty mentioned in tne above seems to 

have stemmed from tht authors' belief that the X's and 

t must be always Independent variables.  This belief Is 

(10 
a rationr.l consequence of their assumption that D 

«^ven in (2.1) is always symmetric with respect to tne 

interchange of coordinates between two similar particles. 

Indeed, according to the assumption, it is pointless to 

say that an individual particle moves alonn a continuous 

trajectory; there is no such individual particle as 

distinguishable from the others by its continuous trajectory. 

In spite of tn? technical difficulty mentioned thus rar, 

it appears that the authors' atnroaoh is at least persistent 

(N) according to their belief th«t D   is symmetric,  but tne 

situation is not necessary so:  \TJinst the authors' 

expectation,  F  (Xj-^X.U), X? -^X^s^t) ,;iven by Ct.b) 

; 
is no more symmetric as is anown below.  Suppose that we consider 

F^'' at X, =4X,(8) and  X. =A X-.Cs).  Tnen, accordin; to 

the symmetry aa.-umption, it must nold tnat 

F(2)(0,ü;t) = F(2)(ÖX^(s)-4X1(s),4X1(s)-4Xi,(K);t) 

Since AX^Cs) - AX. (a) may Increase as s increases, 

the above eou-jtion implies that F  (X ,X^;t) is uniform 

alonor a line f^l ven by X, = -X,.  If we disol ice the origin 

of the coordinate svstem by keepinr; the axes as parallel to 
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I 

I 

those before the displacement, we may realize tnat 

F   is uniform (invariant) ever the enitire phase space. 

This obvious paradox is caused by the attempt to represent 

a microscopic collision in terms of F   which is assumed 

to be symmetric. 

k.    Microscopic collisions are conceivable only when 

we be^in a theory by taking D   of a single system as given by 
I 

(2.3) which is not symmetric. By taking X. = XMs), 
i * 

(N) we are    observing D        along the trajectory of particle i. 

It is worthwhile    to note that there are various solutions 

of the partial differential equation (4.3),  according 

to our choice of functions of s to be  assigned    to p   .   p , 

T1%  and r2; 
: • 
I 
E 

?! » P£(«).     r1 = r*(s) 
(4.10) 

p2  = P|(s)t     r?  = r»(a) 

In the special case wher« these functions ^iven in the 

above satisfy the characteristic equations of Eq.C+.ti) 
i 

which are the very equations of motion given by (3.9), 

(2) (2) 
F   is invariant with respect to s.  Otherwise, Fv 

is not invariant* 

35 



In view of the above investigation,   it appears that Kirkwood and 

(N) Ross believed the symmetry of D        ii» the microscopic sense. 

* 
(Another evidence of their belief is found in one    of Kirlxwood' s 

previous papers also. )   This belief,   in spite of their reasonable 

approach of coarse-graining with respect to time,   seems to have 

jeopardized their derivation.    In general,   the same difficulty as 

is found in the derivation b> Kirkwood and Ross is pointed out 

commonly in derivations beginning with the symmetry assumption 

of DW 
r 

4. 2.    Derivation by Bogoliubov 

The derivation by Bogoliubov is similar to the derivation by 

Kirkwood and Ross.    Bogoliubov defined "streaming operator"   which 

(2) is of the same implication as that of Kx     given by (4. 5).    Therefore 

the difficulty seen in Bogoliubov* s derivation is of the same nature as 

that of Kirkwood and Ross. 

* 
4. 3.    Derivation by Grad 

The derivation by Grad is anomoloua in the sense that the 

(N) derivation is consistent in spite of the symmetry of D       assumed in 

the microscopic sense. This paradoxical situation is explained in the 

following.    Grad defined "truncated distribution functions"» e.g., F. (X.) 

J. Kirkwood,  J.  Ch^m.  Phys.  14,  180(1946).   Particularly the paragraph 
beginning in pg.  181 and ending in the next page is of interest from the 
present viewpoint.   For a system to be investigated,  he chooses one at random 
among those systems constituting a canonical ensemble.  As a result, D*   ' of 
the system is statistical from th - beginning of his theory. 

N.N. Bogoliubov,   Problems of a Dynamical Theory in Statistical Physics 
(1946),  translated by fETGI Liöira,   in Studies in Scansucai Mecnamcs,   emted 
by J.  de Boer and G. E.   Uhlenbeck(North-Holland Publishing Co.  1962) Vol.1. 

H. Grad,   Principles of the Kinetic Theory of Gases,   in Handbuch der Physik 
edited by S.  Flügge (Springer-Verlag,  Berlin 1958),  Vol.   XII pp.  205-295. 
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is the expectation of finding no molecule within 
i i 

a distance (J^ of molecule 1, granting that molecule 
I 

1 is in state X..  It is also assumed that the sphere of 

radius <f limits the domain of influence of molecule 1. 

Qrad derives the equation ox evolution of F.(X.) from 

the Liouville equation,  instead of the equation of 
i 

. evolution of F  (X..).  This is equivalent to considering 
I 1 

the distribution function oi  molecules as in states of 

free flight in the same way as is intended by the Boltzmann 
i 

equation    .    Also by assuming the existence of the sphere 

of influence,   the further treatment appears as if a treatment 

Iof collisions among elastic spherical bodies of diameter n", 
* 

Instead of collisions by means of force  fields.    Therefore 
1 
I the spatial domain oi the collision integral with respect 

to a field particle is always the space outside the sphere 
I 

of Influence of particle 1.  In this way, Grar» could 

avoid the cause of the common difficulty, that is ths 
f 

consideration of trajectories of particles during their 

collisions.  In order to complete the derivation by 

giving  the equation obtained above the same implication 

as that of the Boltzmann equation, however, it is necessary 

to assume the existence of "molecular order'* in the behavior 

♦ o 
F. (X.) is equivalent to   T 

1  1 1 v 

if collisions are rare. 
T 

O 
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of two particles within the distance O'. This 

assumption is not compatible with the postul'tion 

that the symmetry of •;   and hence the Bogoliubov- 

Born-Qreec-Kirkworji-Tvon hierarchy are valid in 

tl.e microscopic sense.  This condition is out of 

the secpe Oi Qrad's theory. Grad's scheme is 

irgeneous in the sense that it has separated itself 

from the treatment of collision mecnanism wuich is 

(N) 
not compatible with ihe symmetry assumption of D ' . 

V. CONCLUSION 

1. The feasibility of the Boltzmann equation 

for neutral molecules has been tested and confirmed 

by experiments. 

2. The Boltzmann collision integral is derivable 

from the Llouville equation only by considering that 

(N) 
the distribution function D   of a system is not 

symmetric in the microscopic sense. 

3. The microscopic symmetry of r  , by which 

a particle is indistinguishable from the others, is not 

compatible with the Boltzmann collision integral where 

a particle is distinguishable during its collision by 

38 



its continuous and ordered trajectory. 

4.  By accepting the Boltzmann equation as 

fea8lblet we must admit that kinetic theory is to 

begin with D   which is not symmetric. 

39 

iv^Hii^-^ — 
MfcÄfESS^L^--. .-^^-„-^jul 



41 

V_X 

V 
JO 

c 
o 

o 
V 

c 
(4 

w     ...     O 

0 
? 

c 
V 

■r-t 

U 
0 

—t 
ft) 
> 

—      y 

& 
v 
5 

| s 
JO o 

"H (4 

I« " 
■V 

6  t: 

V 
> 

DO    V 

(*   O 
♦* 
h 

t 
V 

•s 

(0 
41 
« 

ja   -o 

s   o 

V 
ß 
<4 

■s 
c 
0 

■»3 
41 *• 
U 
4> ••> 
O 
h 

w   .ti 
u 
o *** 
4» 
> 
V 
> 

Ü 
o 

»4 

T3 
C 

rt    *J 

J90 

o 
m 

i 
o 

o 
u 
V 
> 
V 

J 
I 

u 
o 

4) 

-B 
m •** 
u 
I 

h 

u 
•o 
c 
4> 
a 

40 

1 
s 

f-■T^-; 
-,——i—!  
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c 

c' 

(A) 

x: 

x»dxL~ 
x -.-.-.;,=-=/-. 

■ 

(B) 

Fig. 2.2.    In the Boltzmann equation,  the effect of a 

collision ie an integral over the entire phase of the collision as is shown 

in A.    On the other hand,  the effect of a collision in Eq.  (2.8) is accounted 

for only at X  between X and X+dX as is shown in B.    Reduction of the 

Boltamarm equation  from Eq.  (2. 8) is made possible by coarse-graining 

Eq.  (2. 8) with respect to particles and time. 
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